Outline · Standard · [ Linear+ ]

> Resenja iz geometrije za zajednicki

Puzzler
post Feb 10 2008, 05:51 PM
Post #1





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Skenirano se toliko užasno vidi, da ću morati ovako...

You owe me big time.. wink.gif

Papir "16"
3.

{tg^2}{\frac{\pi}{8}}={\frac{1-cos{\frac{\pi}{4}}}{1+cos{\frac{\pi}{4}}}}={\frac{1-{\frac{sqrt{2}}{2}}}{1+{\frac{sqrt{2}}{2}}}}={\frac{2-sqrt{2}}{2+sqrt{2}}}=
={\frac{{(2-sqrt{2})}^2}{2}}
tg{\frac{\pi}{8}}=sqrt{2}-1     {\Rightarrow}      ctg{\frac{\pi}{8}}=sqrt{2}+1
ctg{\frac{\pi}{8}}-tg{\frac{\pi}{8}}=2





tg{\frac{\pi}{12}}=tg({{\frac{\pi}{3}}-{\frac{\pi}{4}}})={\frac{tg{\frac{\pi}{3}}-tg{\frac{\pi}{4}}}{1+tg{\frac{\pi}{3}}tg{\frac{\pi}{4}}}}=...=2-sqrt{3}
tg{\frac{\pi}{12}}=2-sqrt{3}  {\Rightarrow}  ctg{\frac{\pi}{12}}=2+sqrt{3}
tg{\frac{\pi}{12}}+ctg{\frac{\pi}{12}}=4




{sin^4}({\frac{\pi}{16}})+{sin^4}({\frac{3{\pi}}{16}})+{sin^4}({\frac{5{\pi}}{16}})+{sin^4}({\frac{7{\pi}}{16}})={sin^4}({\frac{\pi}{16}})+{sin^4}({\frac{3{\pi}}{16}})+{cos^4}({\frac{3{\pi}}{16}})+{cos^2}({\frac{\pi}{16}})=
=({sin^2}({\frac{\pi}{16}})+{cos^2}({\frac{\pi}{16}}))^2-2{sin^2}({\frac{\pi}{16}}){cos^2}({\frac{\pi}{16}})+({sin^2}({\frac{3{\pi}}{16}})+{cos^2}({\frac{3{\pi}}{16}}))^2-2{sin^2}({\frac{3{\pi}}{16}}){cos^2}({\frac{3{\pi}}{16}})=
1-{\frac{{sin^2}({\frac{\pi}{8}})}{2}}+1-{\frac{{sin^2}({\frac{3{\pi}}{8}})}{2}}=2-{\frac{1-cos{\frac{\pi}{4}}}{4}}-{\frac{1-cos{\frac{3{\pi}}{4}}}{4}}=
={\frac{3}{2}}+{\frac{cos{\frac{\pi}{4}}+cos{\frac{3{\pi}}{4}}}{4}}={\frac{3}{2}}


Zasad samo ovaj, sorry... sad.gif Ne pitaj koliko mi je trebalo.


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
2 Pages  1 2 > 
Reply to this topicStart new topicStart Poll
Replies(1 - 19)
NeverMore21
post Feb 10 2008, 06:10 PM
Post #2





Group: Članovi
Joined: 21-September 06
From: 21. блок
Member No.: 115
Status: Učenik MGa
Ime i prezime: Bojan Zukic
Škola/Razred: Matematicka gimnazija IVb



Au Nenade, ovo ne da je prosto, a ni to ne znam XD.gif ...


--------------------
user posted image
user posted image
user posted image
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 06:11 PM
Post #3





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "16"

4.


{sin^3}{\alpha}(1+ctg{\alpha})+{cos^3}{\alpha}(1+tg{\alpha})={sin^3}{\alpha}+{sin^2}{\alpha}cos{\alpha}+{cos^3}{\alpha}+sin{\alpha}{cos^2}{\alpha}=
{sin^3}{\alpha}+{cos^3}{\alpha}+sin{\alpha}cos{\alpha}(sin{\alpha}+cos{\alpha})=
(sin{\alpha}+cos{\alpha})({sin^2}{\alpha}-sin{\alpha}cos{\alpha}+{cos^2}{\alpha})+sin{\alpha}cos{\alpha}(sin{\alpha}+cos{\alpha})=
(sin{\alpha}+cos{\alpha})(sin^2{\alpha}+cos^2{\alpha})=sin{\alpha}+cos{\alpha}=sqrt{2}sin({\alpha}+{\frac{\pi}{4}})=
cos({\frac{\pi}{2}}-{\alpha}-{\frac{\pi}{4}})=cos({\frac{\pi}{4}}-{\alpha})


cos({\frac{3{\pi}}{10}}-{\alpha})-cos({\frac{{\pi}}{10}}-{\alpha})-cos({\frac{3{\pi}}{10}}+{\alpha})+cos({\frac{{\pi}}{10}}+{\alpha})=
(cos({\frac{3{\pi}}{10}}-{\alpha})+cos({\frac{{\pi}}{10}}+{\alpha}))-(cos({\frac{{\pi}}{10}}-{\alpha})+cos({\frac{3{\pi}}{10}}+{\alpha}))=
=2cos{\frac{\pi}{5}}cos({\alpha}-{\frac{\pi}{10}})-2cos{\frac{\pi}{5}}cos({\alpha}+{\frac{\pi}{10}})=2cos{\frac{\pi}{5}}(cos({\alpha}-{\frac{\pi}{10}})+cos({\alpha}+{\frac{\pi}{10}}))=
=4cos{\frac{\pi}{5}}sin{\alpha}sin{\frac{\pi}{10}}=sin{\alpha} {\cdot} 2 {\cdot} {\frac{2sin{\frac{\pi}{10}}cos{\frac{\pi}{10}}cos{\frac{\pi}{5}}}{cos{\frac{\pi}{10}}}}=sin{\alpha} {\cdot} {\frac{2sin{\frac{\pi}{5}}cos{\frac{\pi}{5}}}{cos{\frac{\pi}{10}}}}=sin{\alpha} {\cdot} {\frac{sin{\frac{2{\pi}}{5}}}{cos{\frac{\pi}{10}}}}=sin{\alpha}


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 06:24 PM
Post #4





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "16"

5.
f(x)=sin^5x=(sin^2x)^2 {\cdot} sin x=({\frac{1-cos 2x}{2}})^2 {\cdot} sin x={\frac{1}{4}}(1-2 cos 2x+cos^2x) {\cdot} sin x=
{\frac{1}{4}}(sin x - 2sin xcos 2x+ sinx {\cdot}{\frac{1+cos 4x}{2}})=
={\frac{1}{8}}(2sin x-2(sin x-sin 3x)+sin x +sin xcos 4x)=
{\frac{1}{8}}(2sinx-2sin3x+2sinx+sinx+{\frac{1}{2}}(sin 5x-sin3x))=
={\frac{1}{16}}(10sinx-4sin3x+sin5x-sin3x)={\frac{1}{16}}(10sinx-5sin3x+sin5x)
T_1=2{\pi}; T_2={\frac{2}{3}}{\pi}; T_3={\frac{2}{5}}{\pi}
T=[T_1,T_2,T_3]=2{\pi}

I drugi skroz analogno...


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
NeverMore21
post Feb 10 2008, 06:43 PM
Post #5





Group: Članovi
Joined: 21-September 06
From: 21. блок
Member No.: 115
Status: Učenik MGa
Ime i prezime: Bojan Zukic
Škola/Razred: Matematicka gimnazija IVb



Nenade, imash od mene 2h u forumu ili 300g fornetija u ponedeljak wink.gif!


--------------------
user posted image
user posted image
user posted image
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 07:42 PM
Post #6





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "16"

7.

cos2x-sqrt{2}sinx+sin2x=0
sqrt{2}sin(2x+{\frac{\pi}{4}})-sqrt{2}sinx=0
sin(2x+{\frac{\pi}{4}})-sinx=0
2sin({\frac{x}{2}}+{\frac{\pi}{8}})cos({\frac{3x}{2}}+{\frac{\pi}{8}})=0
sin({\frac{x}{2}}+{\frac{\pi}{8}})=0 {\vee} cos({\frac{3x}{2}}+{\frac{\pi}{8}})=0

...



{\frac{1}{cosx}}+{\frac{1}{sinx}}=2sqrt{2}

[D: x{\neq}k{\frac{\pi}{2}}, k {\in} Z]
sinx+cosx=2sqrt{2}sinxcosx
sqrt{2}sin(x+{\frac{\pi}{4}})=sqrt{2}sin2x
sin(x+{\frac{\pi}{4}}) - sin2x=0
2sin(-{\frac{x}{2}}+{\frac{\pi}{8}})cos({\frac{3x}{2}}+{\frac{\pi}{8}})=0
sin({\frac{x}{2}}-{\frac{\pi}{8}})=0 {\vee}  cos({\frac{3x}{2}}+{\frac{\pi}{8}})=0
...




sin3x=msinx
3sinx-4sin^3x=msinx
4sin^3x+(m-3)sinx=0
sinx(4sin^2x+m-3)=0
sinx=0 {\vee} 4sin^2x+m-3 =0

Drugi slučaj (prvi je trivijalan):
4sin^2x {\in} [0,4] {\rightarrow} m {\in} [-1,3]
za m {\notin} [-1,3] nema rešenja, a u suprotnom sin^2x={\frac{3-m}{4}}


Ne trebaju meni fornetti ni forum, dosta je i prijateljstvo wink.gif
Ili da mi klikneš na potpis XD.gif

This post has been edited by Puzzler: Feb 10 2008, 07:43 PM


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 07:49 PM
Post #7





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "16"

8.

cos x cos y={\frac{1}{2}}
tg x+tg y=2

cos x cos y={\frac{1}{2}}
{\frac{sinxcosy+sinycosx}{cosxcosy}}=2

cos x cos y={\frac{1}{2}}
{\frac{sin(x+y)}{cosxcosy}}=2

cos x cos y={\frac{1}{2}}
sin(x+y)=1

cos x cos y={\frac{1}{2}}
cos(x+y)=0

cos x cos y={\frac{1}{2}}
cos x cos y - sin x sin y=0

cos x cos y={\frac{1}{2}}
sin x sin y={\frac{1}{2}}

cosxcosy-sinx siny=0
cosxcosy+sinxsiny=1

cos(x+y)=0
cos(x-y)=1


...


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 08:05 PM
Post #8





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "11"

3.

sin2{\alpha}+cos2{\alpha}=a   \ \ \ \ \ \   2{\alpha} {\in} ({\frac{\pi}{4}},{\frac{\pi}{2}}) {\Rightarrow} 4{\alpha} {\in} ({\frac{\pi}{2}},{\pi})
a^2=sin^22{\alpha}+cos^22{\alpha}+2sin2{\alpha}cos2{\alpha}
sin4{\alpha}=a^2-1
sin^24{\alpha}+cos^24{\alpha}=1
cos^24{\alpha}=1-sin^24{\alpha}
cos^24{\alpha}=1-a^4+2a^2-1
cos4{\alpha}=|a sqrt{2-a^2}| \ \ \ \ {\wedge} \ \ \ \ cos4{\alpha}<0  \ \ \ \ {\Rightarrow} cos4{\alpha}=-a sqrt{2-a^2}
sin4{\alpha}+cos4{\alpha}=a^2-1-a sqrt{2-a^2}


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
maxydelanoche
post Feb 10 2008, 08:09 PM
Post #9





Group: Članovi
Joined: 3-May 06
From: Zion
Member No.: 61
Status: Van MGa



Zar je toliko tesko bilo otvoriti temu Trigonometrija ZABOGA!!! Ae sada modovi neka lepo izmeste sve postove u zasebnu temu dry.gif jer je ovo o FIZICI dry.gif


--------------------
Mi znamo sta se desava sa ljudima koji zastanu nasred puta. Bivaju pregazeni.
Nista nije nemoguce. Za nemoguce je samo potrebno malo vise vremena.

I'm doing the best I ever did, I'm doing the best that I can.

www.viva-fizika.org
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
pyost
post Feb 10 2008, 08:10 PM
Post #10


Deus Ex Makina
Group Icon

Group: Administratori
Joined: 25-January 06
From: Beograd
Member No.: 2
Status: Bivši učenik MGa
Škola/Razred: RAF



A zar ne bi to moglo preko PMa? Naspamovaste topic...


--------------------
Baby, it's a violent world.

Registrovani korisnik Linuxa broj 460770 [Ubuntu 7.10]
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
RZA
post Feb 10 2008, 08:11 PM
Post #11


Njeno Ljubičanstvo


Group: Članovi
Joined: 7-September 06
Member No.: 92
Status: Bivši učenik MGa



A ne.. trebace i meni!


--------------------
cold
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
pyost
post Feb 10 2008, 08:13 PM
Post #12


Deus Ex Makina
Group Icon

Group: Administratori
Joined: 25-January 06
From: Beograd
Member No.: 2
Status: Bivši učenik MGa
Škola/Razred: RAF



Evo vam na, nov topic XD.gif


--------------------
Baby, it's a violent world.

Registrovani korisnik Linuxa broj 460770 [Ubuntu 7.10]
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 08:15 PM
Post #13





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "11"

4.
1+tg{\alpha}+tg^2{\alpha}+tg^3{\alpha}=4
tg^3{\alpha}+tg^2{\alpha}+tg{\alpha}-3=0
tg^3{\alpha}-tg^2{\alpha}+2tg^2{\alpha}-2tg{\alpha}+3tg{\alpha}-3=0
(tg{\alpha}-1)(tg^2{\alpha}+2tg{\alpha}+3)=0

tg{\alpha}=1 , jer je tg^2{\alpha}+2tg{\alpha}+3=(tg{\alpha}+1)^2+2>0

sin2{\alpha}={\frac{2tg{\alpha}}{1+tg^2{\alpha}}}=1
cos2{\alpha}={\frac{1-tg^2{\alpha}}{1+tg^2{\alpha}}}=0

This post has been edited by Puzzler: Feb 10 2008, 08:21 PM


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Anchi
post Feb 10 2008, 08:17 PM
Post #14





Group: Članovi
Joined: 27-July 06
Member No.: 76
Status: Učenik MGa
Škola/Razred: MG



Jeeeeeeeej extra biggrin.gif smile.gif yahoo.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 08:21 PM
Post #15





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



QUOTE(pyost @ Feb 10 2008, 08:10 PM)
A zar ne bi to moglo preko PMa? Naspamovaste topic...
*



Sorry, ne bi moglo, probao sam jednom drugu i ranije da pošaljem, i ovi tagovi ne rade... Izvini još jednom, pyoste. wink.gif


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
pyost
post Feb 10 2008, 08:22 PM
Post #16


Deus Ex Makina
Group Icon

Group: Administratori
Joined: 25-January 06
From: Beograd
Member No.: 2
Status: Bivši učenik MGa
Škola/Razred: RAF



Meni rade wacko.gif


--------------------
Baby, it's a violent world.

Registrovani korisnik Linuxa broj 460770 [Ubuntu 7.10]
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Anchi
post Feb 10 2008, 08:29 PM
Post #17





Group: Članovi
Joined: 27-July 06
Member No.: 76
Status: Učenik MGa
Škola/Razred: MG



Neka, bolje ovako da svi vidimo biggrin.gif I meni su neka resenja bila neophodna XD.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
T-Rex
post Feb 10 2008, 08:43 PM
Post #18





Group: Članovi
Joined: 5-December 07
Member No.: 790
Status: Učenik MGa
Ime i prezime: Чедо Ш.
Škola/Razred: MG IIб



Pazite ljudi shpijunira Ljubinka dry.gif

This post has been edited by T-Rex: Feb 10 2008, 08:44 PM
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Anchi
post Feb 10 2008, 08:53 PM
Post #19





Group: Članovi
Joined: 27-July 06
Member No.: 76
Status: Učenik MGa
Škola/Razred: MG



QUOTE(T-Rex @ Feb 10 2008, 08:43 PM)
Pazite ljudi shpijunira Ljubinka dry.gif
*



Jos samo kad bi znala da upali komp i pokrene Firefox (ili IE...) XD.gif lol.gif laugh.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
T-Rex
post Feb 10 2008, 09:05 PM
Post #20





Group: Članovi
Joined: 5-December 07
Member No.: 790
Status: Učenik MGa
Ime i prezime: Чедо Ш.
Škola/Razred: MG IIб



Kako sam glup brate meni ova reshenja nishta ne znache...
Ja sam sutra ugasio, bice iz keca u kec... biggrin.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post

2 Pages  1 2 >
Reply to this topicTopic OptionsStart new topic
2 User(s) are reading this topic (2 Guests and 0 Anonymous Users)
0 Members: