[ Outline ] · Standard · Linear+

> BMO

rvukasin
post Apr 28 2007, 07:20 PM
Post #1





Group: Članovi
Joined: 15-September 06
From: Ub
Member No.: 103
Status: Učenik MGa
Ime i prezime: Vukasin Rankovic
Škola/Razred: Matematicka gimnazija 4c



Da li ima nekih vesti,kako su nasi uradili,kakvi su bili zadaci?


--------------------
user posted imageuser posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
 
Reply to this topicStart new topicStart Poll
Replies
^_NiN0_^
post Apr 28 2007, 11:48 PM
Post #2


Moderator
Group Icon

Group: Moderatori
Joined: 29-January 06
Member No.: 4
Status: Učenik MGa



E ovo je bilo trivijalno ! kso.gif Imao bih zlato 'ladno ... mellow.gif

This post has been edited by ser_fanky Lj@B: Apr 28 2007, 11:48 PM


--------------------
Yo!hambin,
Yo!hambina, Yo!hambin
Yo-yo, yo-yo, yo
Yo!hambin,
Yo!hambina, Yo!hambiiina
(Mala matura deca kokaina®
Velika matura deca Yo!hambina)
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
rvukasin
post Apr 29 2007, 10:40 AM
Post #3





Group: Članovi
Joined: 15-September 06
From: Ub
Member No.: 103
Status: Učenik MGa
Ime i prezime: Vukasin Rankovic
Škola/Razred: Matematicka gimnazija 4c



QUOTE(ser_fanky Lj@B @ Apr 28 2007, 11:48 PM)
E ovo je bilo trivijalno !  kso.gif  Imao bih zlato 'ladno ...  mellow.gif
*


Mislim da bi znao 2 zad.
Dobio sam
f(x)=x^2
Naravno ne nagadjanjem
Ako treba mogu i da ispisem svoje resenje

evo mog resenja nadam se da je tacno:


Ako uzmemo da je  y=f(x)
dobicemo  f(2f(x)) = f(0) + 4f(x)^2
odnosno  f(2y)=f(0) + 4y^2 (*)
ako bi uzeli da je  x=0 i  y=f(0)
dobili bismo  f(2f(0)) = f(0) + 4f(0)^2
odnosno  f(2y)=y + 4y^2
smenom  m=2y dobijamo  f(m)={m\over 2} + m^2
kada bi to zamenili u pocetnu jednacinu  f(f(x) +y) = f(f(x) - y) + 4f(x)y
dobili bismo da je  y=0 a posto smo na pocetku uzeli da je  y=f(0)
dobijamo da je  f(0) = 0
iz (*) sledi da je  f(2f(x) = 0 + 4f(x)^2
odnosno  f(x) = y sledi  f(2y) = 4y^2
pa je  f(y) = y^2
sto je tacno i posle direktne provere

This post has been edited by ser_fanky Lj@B: Apr 29 2007, 11:07 AM


--------------------
user posted imageuser posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
dushan
post Apr 29 2007, 03:01 PM
Post #4





Group: Članovi
Joined: 4-April 07
Member No.: 492
Ime i prezime: Dusan Djukic



QUOTE(rvukasin @ Apr 29 2007, 10:40 AM)
evo mog resenja nadam se da je tacno:
Ako uzmemo da je  y=f(x)
dobicemo  f(2f(x)) = f(0) + 4f(x)^2
odnosno  f(2y)=f(0) + 4y^2 (*)
ako bi uzeli da je  x=0 i  y=f(0)
dobili bismo  f(2f(0)) = f(0) + 4f(0)^2
odnosno  f(2y)=y + 4y^2
*



Па ако су вам свима оваква решења... онда машала. Бојим се да ово скроз не ваља још од трећег реда. Не мора за свако y да ти постоји x тако да је y=f(x), а још мање мора да постоји 0 тако да је y=f(0) blink.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post

Posts in this topic
rvukasin   BMO   Apr 28 2007, 07:20 PM
maxydelanoche   RE: BMO   Apr 28 2007, 10:26 PM
rvukasin   RE: BMO   Apr 28 2007, 10:34 PM
dushan   RE: BMO   Apr 28 2007, 11:45 PM
^_NiN0_^   RE: BMO   Apr 28 2007, 11:48 PM
rvukasin   RE: BMO   Apr 29 2007, 10:40 AM
dushan   RE: BMO   Apr 29 2007, 03:01 PM
^_NiN0_^   RE: BMO   Apr 29 2007, 11:07 AM
tijana   RE: BMO   Apr 29 2007, 01:33 PM
^_NiN0_^   RE: BMO   Apr 29 2007, 05:24 PM
dushan   RE: BMO   Apr 29 2007, 05:50 PM
^_NiN0_^   RE: BMO   Apr 29 2007, 05:54 PM
dushan   RE: BMO   Apr 29 2007, 06:03 PM
Cekaaa   RE: BMO   Apr 29 2007, 07:47 PM
Cekaaa   RE: BMO   Apr 29 2007, 09:14 PM
Iva   RE: BMO   Apr 29 2007, 10:35 PM
^_NiN0_^   RE: BMO   Apr 29 2007, 11:55 PM
Teodoros   RE: BMO   May 2 2007, 02:01 PM
Hannibal Lecter   RE: BMO   May 2 2007, 02:05 PM
^_NiN0_^   RE: BMO   May 2 2007, 03:19 PM
pyost   RE: BMO   May 2 2007, 03:24 PM
Gaara   RE: BMO   May 2 2007, 04:06 PM
Cekaaa   RE: BMO   May 2 2007, 07:16 PM
Teodoros   RE: BMO   May 3 2007, 08:32 AM
maxydelanoche   RE: BMO   May 2 2007, 09:32 PM


Reply to this topicTopic OptionsStart new topic
2 User(s) are reading this topic (2 Guests and 0 Anonymous Users)
0 Members: