2 Pages < 1 2 
Reply to this topicStart new topicStart Poll

Outline · [ Standard ] · Linear+

> Resenja iz geometrije za zajednicki

Puzzler
post Feb 10 2008, 09:06 PM
Post #21





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "11"

5.

sin^3x-cos^3x=-1
(sinx-cosx)(sin^2x+sinxcosx+cos^2x)=-1
smena: \ \ sinx-cosx=t
(sinx - cosx)^2=1-2sinxcox {\Rightarrow} sinxcosx={\frac{1-t^2}{2}}
(sinx-cosx)(1+sinxcosx)=-1
t(1+{\frac{1-t^2}{2}})=-1
t^3-3t-2=0
(t+1)^2(t-2)=0
t=-1 (*) {\vee} t=2 (**)
[sin2x {\in} [-1,1] {\Rightarrow} sinxcosx {\in} [-{\frac{1}{2}},{\frac{1}{2}}]]

(*) sinx -cosx=-1 {\wedge} sinxcosx=0 {\Rightarrow} (sinx=0 {\wedge} cosx=1) {\vee} (cosx=0 {\wedge} sinx=-1)

...

(**) sinx - cosx=2 {\wedge} sinxcosx={\frac{3}{2}} {\notin} [-{\frac{1}{2}},{\frac{1}{2}}] {\Rightarrow} nema \ resenja








sin3x=sin^3x
3sinx-4sin^3x=sin^3x
5sin^3x-3sinx=0
sinx(5sin^2x-3)=0
sinx=0 {\vee} sin^2x={\frac{3}{5}}

...







sin^6x-cos^6x=sin^3x+cos^3x
(sin^3x-cos^3x)(sin^3x+cos^3x)=sin^3x+cos^3x
(sin^3x-cos^3x-1)(sin^3x+cos^3x)=0
sin^3x-cos^3x=1 {\vee} sin^3x+cos^3x=0
sin^3x-cos^3x=1 {\vee} (sinx+cosx)(sin^2x-sinxcosx+cos^2x)=0
sin^3x-cos^3x=1 {\vee} sinx+cosx=0 {\vee} sinxcosx=1
sin^3x-cos^3x=1 {\vee} sqrt{2}sin(x+{\frac{\pi}{4}}) {\vee} sin2x={\frac{1}{2}}

Druge dve su trivijalne, a prva se rešava istom smenom kao i pod a).




tgx+cos2x=1
tgx+{\frac{1-tg^2x}{1+tg^2x}}=1
tgx+tg^3x+1-tg^2x=1+tg^2x
tg^3x-2tg^2x+tgx=0
tgx(tgx-1)^2=0
tgx=0 {\vee} tgx=1
x=k{\pi} {\vee} x={\frac{\pi}{4}}+k{\pi}, k {\in} Z




2tgx+{\frac{2tgx}{1+tg^2x}}=3
2tgx+2tg^3x+2tgx=3+3tg^2x
2tg^3x-3tg^2x+4tgx-3=0
(tgx-1)(2tg^2x-tgx+3)=0
tgx=1, jer \ je \ 2tg^2x-tgx+3=2(tgx-{\frac{1}{4}})^2+{\frac{7}{8}}>0
x={\frac{\pi}{4}}+k{\pi}, \ k {\in} Z


Ma opusti se Čedo... Malo samopouzdanja puno znači. wink.gif

This post has been edited by Puzzler: Feb 10 2008, 09:07 PM


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 09:21 PM
Post #22





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "11"

8.

tg(arcsin{\frac{1}{3}}+arctg{\frac{1}{3}}+arccos{\frac{1}{3}})=tg({\frac{\pi}{2}}+arctg{\frac{1}{3}})=-ctg(arctg{\frac{1}{3}})=-ctg(arcctg3)=-3

9.

sin(2arcsin{\frac{3}{5}}+2arccos(-{\frac{4}{5}}))=sin(2arcsin{\frac{3}{5}}+2{\pi}-arccos{\frac{4}{5}})=sin(2arcsin{\frac{3}{5}}-arcsin sqrt{1-({\frac{4}{5}}})^2)=
=sin(2arcsin{\frac{3}{5}}-2arcsin{\frac{3}{5}})=sin0=0

10.

arcsin(sin6)+arccos(sin(6{\pi}-6))=arcsin(sin(6-2{\pi}))+arccos(sin(-6))=arcsin(sin(6-2{\pi}))+arccos(cos{\frac{\pi}{2}}+6))=
=arcsin(sin(6-2{\pi}))+arccos(cos(6-{\frac{3{\pi}}{2}}))=6-2{\pi}+6-{\frac{3{\pi}}{2}}=
[ovo \ vazi \ jer \ 6-2{\pi} {\in} [-{\frac{\pi}{2}},{\frac{\pi}{2}}] \ i \ 6-{\frac{3{\pi}}{2}} {\in} [0,{\pi}]]
=12 - {\frac{7{\pi}}{2}}


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
T-Rex
post Feb 10 2008, 09:21 PM
Post #23





Group: Članovi
Joined: 5-December 07
Member No.: 790
Status: Učenik MGa
Ime i prezime: Чедо Ш.
Škola/Razred: MG IIб



A jos vise znaci kad uzmes malo da ucis biggrin.gif
Al me nesto nece...
blush.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Puzzler
post Feb 10 2008, 09:30 PM
Post #24





Group: Članovi
Joined: 2-July 06
Member No.: 74
Status: Van MGa
Škola/Razred: MG/IIb (proud of it)



Papir "11"

11.

2-2cosx-4sinx {\le} 0
3-2(1-2sin^2x)-4sinx {\le} 0
3-2+4sin^2x-4sinx{\le}0
4sin^2x-4sinx+1{\le}0
(2sinx-1)^2{\le}0
2sinx-1=0
sinx={\frac{1}{2}}
...



cos2x+cos4x{\ge}0
2cos3xcox{\ge}0
sada nacrtati grafike funkcija cos3x i cosx na intervalu [0,2{\pi}], naći gde su istog znaka, i rešenje su ti intervali + 2k{\pi}.


T-T-T-That all, Folks!!! Nadam se da ćete, kao i ja, sada malo da gledate "Ovo nije glupi tinejdžerski film". Pozz


--------------------
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
^_NiN0_^
post Feb 10 2008, 09:46 PM
Post #25


Moderator
Group Icon

Group: Moderatori
Joined: 29-January 06
Member No.: 4
Status: Učenik MGa



Ne kontam koliko ste vi to zadataka imali ?
E gledam ovo nije glup ... aaaaaaaa


--------------------
Yo!hambin,
Yo!hambina, Yo!hambin
Yo-yo, yo-yo, yo
Yo!hambin,
Yo!hambina, Yo!hambiiina
(Mala matura deca kokaina®
Velika matura deca Yo!hambina)
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
NeverMore21
post Feb 10 2008, 10:29 PM
Post #26





Group: Članovi
Joined: 21-September 06
From: 21. блок
Member No.: 115
Status: Učenik MGa
Ime i prezime: Bojan Zukic
Škola/Razred: Matematicka gimnazija IVb



Nenade spasao si me!!!! Mada cu opet da zabodem 4 u najboljem slucaju, al nema veze!!! Sutra od Baltik tima imas ruchak cheers.gif ...


--------------------
user posted image
user posted image
user posted image
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
NeverMore21
post Feb 10 2008, 10:43 PM
Post #27





Group: Članovi
Joined: 21-September 06
From: 21. блок
Member No.: 115
Status: Učenik MGa
Ime i prezime: Bojan Zukic
Škola/Razred: Matematicka gimnazija IVb



QUOTE(T-Rex @ Feb 10 2008, 10:05 PM)
Kako sam glup brate meni ova reshenja nishta ne znache...
Ja sam sutra ugasio, bice iz keca u kec... biggrin.gif
*



Ma neces bre smile.gif , znas ono:

"Kladicu se ovog puta
iz keca u dva
da ce prva da povede
a da slavim ja"

Evo ja se kladim da neces zabosti keca...primas li opkladu? Nemoj samo da namerno nista ne uradis tongue.gif!

This post has been edited by NeverMore21: Feb 10 2008, 11:35 PM


--------------------
user posted image
user posted image
user posted image
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
T-Rex
post Feb 11 2008, 12:49 AM
Post #28





Group: Članovi
Joined: 5-December 07
Member No.: 790
Status: Učenik MGa
Ime i prezime: Чедо Ш.
Škola/Razred: MG IIб



Opklada prihvacena smile.gif
U pivo cheers.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
NeverMore21
post Feb 11 2008, 01:01 AM
Post #29





Group: Članovi
Joined: 21-September 06
From: 21. блок
Member No.: 115
Status: Učenik MGa
Ime i prezime: Bojan Zukic
Škola/Razred: Matematicka gimnazija IVb



Ti castis laugh.gif ...


--------------------
user posted image
user posted image
user posted image
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
T-Rex
post Feb 11 2008, 01:09 AM
Post #30





Group: Članovi
Joined: 5-December 07
Member No.: 790
Status: Učenik MGa
Ime i prezime: Чедо Ш.
Škola/Razred: MG IIб



Ja bi voleo smile.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Anchi
post Feb 11 2008, 06:31 PM
Post #31





Group: Članovi
Joined: 27-July 06
Member No.: 76
Status: Učenik MGa
Škola/Razred: MG



Jao Nenade spasao si nas sa onim resenjima smile.gif biggrin.gif Inace je bilo mnogo lakse nego sto sam mislila da ce biti... Ljubinkina poslednja dva kontrolna su bila 100 puta teza XD.gif
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Hannibal Lecter
post Feb 11 2008, 06:32 PM
Post #32





Group: Članovi
Joined: 15-October 06
From: People's Democratic Republic of Konjarnik
Member No.: 154
Status: Bivši učenik MGa
Ime i prezime: Ilija Ivanišević
Škola/Razred: Fizički fakultet, B smer, I godina,



ja sam uradio sve soproud.gif


--------------------
And as we wind on down the road
Our shadows taller than our soul
There walks a lady we all know
Who shines white light and wants to show
How everything still turns to gold
And if you listen very hard
The truth will come to you at last
When all are one and one is all
To be a rock and not to roll


Svi me žele, a ja sam nedodirljiv!
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
NeverMore21
post Feb 11 2008, 07:07 PM
Post #33





Group: Članovi
Joined: 21-September 06
From: 21. блок
Member No.: 115
Status: Učenik MGa
Ime i prezime: Bojan Zukic
Škola/Razred: Matematicka gimnazija IVb



Nisi jedini cool.gif ...


--------------------
user posted image
user posted image
user posted image
user posted image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
Hannibal Lecter
post Feb 11 2008, 09:10 PM
Post #34





Group: Članovi
Joined: 15-October 06
From: People's Democratic Republic of Konjarnik
Member No.: 154
Status: Bivši učenik MGa
Ime i prezime: Ilija Ivanišević
Škola/Razred: Fizički fakultet, B smer, I godina,



Pa kad je bilo prosto


--------------------
And as we wind on down the road
Our shadows taller than our soul
There walks a lady we all know
Who shines white light and wants to show
How everything still turns to gold
And if you listen very hard
The truth will come to you at last
When all are one and one is all
To be a rock and not to roll


Svi me žele, a ja sam nedodirljiv!
User is offlineProfile CardPM
Go to the top of the page
+Quote Post

2 Pages < 1 2
Reply to this topicTopic OptionsStart new topic
2 User(s) are reading this topic (2 Guests and 0 Anonymous Users)
0 Members: